USING THE ELECTRICAL WIRING DIAGRAM

One of the keys to a quick and successful electrical diagnosis is correctly using the Toyota Electrical Wiring Diagram or EWD. The EWD is not just a book of wiring diagrams, but an information resource for anything electrical on the vehicle. Everything from connector ID and location to what circuits share splice points is included in this manual.

Because there is so much information, it takes a little practice to learn where it is located, and what each of the EWD symbols and individual sections can tell you. We will take a detailed look at all of these features, and how to use them in diagnosing an electrical problem.

As you follow your instructor’s “tour” of the EWD Sections, it is recommended that you use the actual EWD, instead of this technician handbook. This way, you will be getting a “feel” for the actual tool that you have at your dealership. For a review of the EWD and its sections, view the Toyota Technical Training Video Using the Electrical Wiring Diagram (p/n 00401-42925).

Sections of the EWD

The EWD is an invaluable tool when diagnosing an electrical problem. Knowing where specific information is, and the “system” that the book uses helps to speed up the diagnostic process.

Fig. 2-1

<table>
<thead>
<tr>
<th>Section Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>A</td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>B</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>C</td>
</tr>
<tr>
<td>GLOSSARY OF TERMS/SYMBOLS</td>
<td>D</td>
</tr>
<tr>
<td>RELAY LOCATIONS</td>
<td>E</td>
</tr>
<tr>
<td>ELECTRICAL WIRING ROUTING</td>
<td>F</td>
</tr>
<tr>
<td>POWER SOURCE (Current Flow Chart)</td>
<td>H</td>
</tr>
<tr>
<td>SYSTEM CIRCUITS</td>
<td>I</td>
</tr>
</tbody>
</table>
The Table of Contents

With the large number of pages and sections in the EWD, the fastest way to find the wiring diagram or information you need is to use the Table of Contents.

There are two table of contents that are available. One is on the title page of the book. This lists all of sections (A-K) and the also has an alphabetical list of all the System Circuit Diagrams located in Section I. These wiring diagrams are the "heart" of the EWD, and the place to start when diagnosing an electrical problem. There is also a listing of each System Circuit Diagram on the first page of Section I.

Table of Contents

The table of contents is found on the title page of the EWD. A second table of contents for just the System Circuit Diagrams is found at the beginning of Section I.

1993 TOYOTA CAMRY

ELECTRICAL WIRING DIAGRAM

<table>
<thead>
<tr>
<th>Section Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>A 2</td>
</tr>
<tr>
<td>HOW TO USE THIS MANUAL</td>
<td>B 3</td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>C 10</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>D 15</td>
</tr>
<tr>
<td>GLOSSARY OF TERMS AND SYMBOLS</td>
<td>E 16</td>
</tr>
<tr>
<td>RELAY LOCATIONS</td>
<td>F 18</td>
</tr>
<tr>
<td>ELECTRICAL WIRING ROUTING</td>
<td>G 28</td>
</tr>
<tr>
<td>POWER SOURCE (Current Flow Chart)</td>
<td>H 46</td>
</tr>
<tr>
<td>SYSTEM CIRCUITS</td>
<td>I 57</td>
</tr>
</tbody>
</table>

- ABS (ANTI-LOCK BRAKE SYSTEM)
- AIR CONDITIONING (RUSH CONTROL, SW TYPE)
- AIR CONDITIONING (EVER CONTROL SW TYPE)
- AUTO ANTENNA (ISO)
- AUTO ANTENNA (W/O)
- BACK DOOR LOCK (W/O POWER WINDOW)
- BACK-UP LIGHT
- CHARGING
- CIGARETTE LIGHTER AND CLOCK
- COMBINATION METER
- CRUISE CONTROL
- DOOR LOCK
- ELECTRONIC CONTROLLED TRANSMISSION
- ELECTRONIC CONTROLLED TRANSMISSION AND AT INDICATOR (GW/FE)
- ELECTRICALLY CONTROLLED HYDRAULIC COOLING FAN (GW/FE)
- ELECTRICALLY CONTROLLED ENGINE (GW/FE)
- ENGINE CONTROL (WS/FE)
- FRONT WIPER AND WASHER
- HEADLIGHT (FOR USA)
- HEADLIGHT (FOR CANADA)
- HORN
- ILLUMINATION
- INTERIOR LIGHT (ISO W/O KEY)
- ILLUMINATED ENTRY
- OVERALL ELECTRICAL WIRING DIAGRAM

© 1992 TOYOTA MOTOR CORPORATION
All rights reserved. This book may not be reproduced or copied, in whole or in part, without the written permission of Toyota Motor Corporation.
Section I

System Circuit Diagrams

The EWD is built around the use of the System Circuit Diagrams. These wiring diagrams provide “circuit road maps” for individual circuits or systems on the vehicle. You’ll find that there are a lot of advantages to using this type of diagram over the “old-style” overall wiring diagrams.

Advantages

- More Information
 There is a lot of written information (such as component ID’s) on each diagram that works with the support materials/other Sections in the manual. Also, the symbols that are used graphically give you information about components, connectors, or wires. Understanding the full meaning of the symbols and “ID callouts” will save you time when trying to locate or identify these components on the car.

- Easier to Use
 Every diagram shows only one system at a time. The parallel connections to other circuits can be traced using Power Source and Ground Point sections. Tracing current flow through the circuit is also easier because the power is at the top and the ground is at the bottom of each page.

- Printed in Color
 Because the diagrams are printed in color, identifying the wires shown on the wiring diagram in the vehicle harness or at the connectors is a lot easier.

System Circuit Diagrams

The entire EWD is built around the System Circuit Diagram. Every number, letter, shape, and shading on the diagram tells you information that can help you to locate or identify components on the car faster.

Fig. 2-3
Watch for *Asterisks, (Parenthesis), and the Title at the Top

These small notes will make a big difference! These marks alert you to different wiring or connections based upon model, engine type, Calif., Federal, or Canadian specification.

Fig. 2-4

Asterisk Indicates with or without AC

Parenthesis is used to indicate wires of connection on different engines or specifications. Can also be used to show difference between SEDAN and WAGON models.
Understanding the System Circuit Diagram

On each System Circuit Diagram, there is a lot of information that is given to you through the use of different symbols, colors, numbers, and letters. Understanding the meaning behind each of these is very important to effectively use the EWD.

Wire Colors

Besides being shown in color, wire colors are also indicated by an alphabetical code next to each of the wires. The first letter represents the basic wire color, and the second letter indicates the color of the “stripe” on the wire.

- **Blue Wires**
 As you look at the list below, note that the color blue is represented by the letter “L” to separate it from the letter “B” used to identify “black”. Also note that there is no “light blue” wire designation used in Toyota wiring harnesses. If it is any shade of blue, it’s considered blue (L).

- **Component “Pigtails”**
 The wire colors of component “pigtails” (such as on an igniter) are **not shown in the EWD**. The colors in the EWD represent the vehicle harness up to where it is connected to the component.

- **Silver Bands on the Wire Insulation**
 On some wires, you will find small silver “bands”. These bands (which are not shown on the wiring diagram) indicate that the wire uses a PVC insulation. This insulation is lighter in weight and thinner than the normal insulation, making the wire diameter appear smaller than it actually is. (May look like a 20 ga. wire on the outside, but is really a 16 ga. when the wire strands are examined.)

Wire Identification

Wires are identified by color and by the letters next to the wire. The letter that follows the “-” is the stripe on the wire. Note that the color BLUE is represented by the letter “L”.

Fig. 2-5

- **B** = Black
- **O** = Orange
- **B** = Brown
- **P** = Pink
- **G** = Green
- **R** = Red
- **G** = Grey
- **V** = Violet
- **B** = Blue
- **W** = White
- **L** (Blue) = Light Green
- **Y** (Yellow) = Yellow
Junction Blocks

Junction blocks are used to distribute power and ground to the different circuits. A junction block joins the circuits using layers of insulated, solid metal plates, eliminating the need for many additional splices, and improving reliability.

- **Grey Shading**
 Every junction block shown on the wiring diagram is highlighted with grey shading. If there is more than one junction block shown in a single diagram, a different grey shading is used for each Junction Block.

- **ID Numbers**
 Connections to the J/B are indicated with an oval. The J/B number and the connector number are inside the oval, with pin number just to the left. Use these ID numbers with the Junction Block and Wire Harness Connector location table in the support section which follows each wiring diagram. This table has a written description of where the J/B is located, and a page number in Section F Relay Locations where a complete diagram of the J/B is located.
Relay Blocks

A relay block acts as a central location for relays, harness-to-harness connectors, and fuses. Although similar in appearance to a Junction Block, relay blocks are different because they do not have internal circuits inside to distribute power or ground, like a junction block.

Key Features

- **ID Numbers**
 The ID number in an oval (similar to a J/B), tells you which Relay Block the relay is located in. The connector to each relay is identified only by the relay that it is connected to (there is no individual connector number as on a J/B). Note that the Relay Block ID number sequence is integrated into the same sequence as the Junction Block ID’s. (This means that if there is a Relay Block #4, there will not be a Junction Block #4.)

- **No Shading**
 Relay Blocks are not shaded on the diagram like a Junction Block is.

- **Location on the Vehicle**
 The location of a Relay Block can be found by matching the ID number on the Relay Block location table in the support section that follows each system circuit diagram. This will direct you to a diagram of the relay block located in Section F of the EWD.

Radiator Fan and Condenser Fan (SS-FE)

<table>
<thead>
<tr>
<th>PARTS LOCATION</th>
<th>CODE</th>
<th>SEE PAGE</th>
<th>CODE</th>
<th>SEE PAGE</th>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAY BLOCKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUNCTION BLOCK AND WIRE HARNESS CONNECTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONNECTING WIRE HARNESS AND WIRE HARNESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND POINTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grounding Left (See Page 18)

For 3VZE

- Relay Fan Relay No. 2 (for CANADA)

For SS-FE

- Daytime Running Light Relay No. 2 (for CANADA)
- AC Magnetic Clutch Relay
- 15A Head (10AWG) Fuse (For CANADA)

Connector Pin Number on Circuit Opening Relay Connector

Fig. 2-7
Components/Parts

All loads, relays, switches, ECU-type controllers, capacitors (noise filters) and isolation diodes are treated as component parts in the circuit.

Key Features

- **ID Numbers**
 Each component connector has an ID number. This ID number usually begins with the first letter of the name of the component. (This is unlike the splice points and harness-to-harness connectors which use the letters E, I, and B to indicate engine compartment, instrument panel, or body wiring harness location.) Use the ID number with the parts location table that follows each wiring diagram. This will refer you to a harness connector diagram in Section G where the component connector's location is shown.

- **“Light Blue” Shading**
 Parts are always shaded in blue.

- **Common Connectors**
 When 2 parts or circuits use a common connector (such as the headlight and turn signal circuits using the combination switch connector) the connector name used in the Section G Wire Routing diagram is shown in brackets under the component name.
Whenever a wire is connected to an electrical component, the pin number is listed next to each wire. These pin numbers correspond to the connector diagrams provided in the support section which follows each wiring diagram.

- **Connector ID**
 Connectors at the component are identified by the component connector ID number.

- **Connector Color**
 The color of the connector is white unless another color is listed.

- **Pin Numbering**
 Connector pin numbers are always shown from the mating side of the connector, not the “harness” side of the connector. If you are backprobing the connector for a voltage check, remember that the pin numbering becomes the “mirror” of what is pictured in the diagram.

HINT

Use the wire color in the wiring diagram to “double check” that you are looking at the correct pin.

- **Dot in the Connector**
 A “●” in the connector cavity indicates that the cavity is used but by another circuit.

- **X in the Connector**
 An X in the connector indicates that the cavity is empty.

- **Multiple Connectors on a Single Component**
 If there are multiple connectors on a single component (such as on the TCCS ECM), each connector will have an individual parts/connector ID number, and will also be identified with a “letter in a circle”. This letter in a circle is used as a “shorthand” way to ID the connector next to each of the pins, and is also used on the connector diagrams that follow the System Circuit Diagram.
Pin Numbering on the EWD

Pin numbers are next to the wire. Use the component ID number to find the connector diagram which is part of the support section. The pin numbers are shown from the front or "mating" side of the connector, and not the harness side. If there is more than one connector for a single component, a letter is assigned as a "call-out" for that connector.

Fig. 2-9
A connector joining wire harness and wire harness or "harness-to-harness connector" is located within the harness, and is not found at an individual component.

- **ID Numbers**
 ID numbers will begin with E for engine, I for instrument panel, and B for body. Use the ID number to find the connector in Section G of the EWD.

- **Connector Diagrams**
 Diagrams for these connectors are not located with the component connectors which follow the wiring diagram. Because these connectors are used in a number of different circuits, all the information about them is located in Section G of the EWD. The Wire Harness Joining Wire Harness location table describes the location and tells you the page to turn to for the location diagram and connector/pin details.

- **Male and Female Terminals**
 Male and female terminal side of the harness is shown by the shape of the symbol.

Wire Harness to Wire Harness Connectors

Harness-to-harness connectors use a 3-digit ID number. Information on the connectors is located in Section G of the EWD.

Fig. 2-10
Locating a Harness-to-Harness Connector

Use the ID number on the Location Table. Turn to the Section G page for pin numbering and a location diagram.

Fig. 2-11
Switches and Relays

A simple single-pole, single-throw switch is relatively easy to understand on a wiring diagram. However, if the switch is a multi-pole (has more than one pin that is being switched), or gang type switch (where the movement of the switch lever moves a number of switches open or closed), the symbol used on the wiring diagram can be more difficult to understand.

Key Features

- **Switches are shown in the OFF position**
 All switches and relays are shown in the OFF position. If it's a relay, you know that the relay coil is **not** “energized”.

- **Multi-pole Switches**
 For multi-pole switches such as the Combination Switch, or the Heater Fan Switch, the schematic symbol is a little more complicated. A circle and line indicate which pins are connected together under each of the different switch positions. On the Heater Fan Switch, a “bus bar” is moved for each switch position, changing the pin connections in the switch.

- **“Gang” type Switches**
 If it is a fairly simple “gang” type switch, a **dotted line** inside the switch will connect the “arms” of the switches together.

Switches

Multi-pole switches can be a tricky to follow. In some switches, a circle and line indicates which pins are connected in a particular switch position. On some switches, a “bus bar” is used to show the various pin connections.

Fig 2-12

There is continuity between Pin 10 and Pin 7 in the OFF position

If the switch is used as a “sensor”, look at the System Outline or Service Hints for the conditions that cause it to be open or closed.

Example of Gang-type switch in Remote Control Mirror Switch Assembly

In the M1 Position, there is continuity between Pin 2 and 4, and Pin 7 and 8

Relays are shown DE-ENERGIZED
Shielding
On low voltage/low current flow wires (such as those used on the oxygen sensor, knock sensor, and distributor G and Ne signals) shielding is used. When a wire is shielded, an additional ground wire is wrapped around the insulation of the low current wire to absorb any electro-magnetic interference. In the EWD, shielding is represented by a dotted line around a wire. **Do not confuse this with the dotted line used inside a multi-pole “gang” type switch.**

CAUTION
When checking for voltage in a circuit that uses shielded wires, **NEVER puncture the insulation with the test probe!** This will short the sensor wire to the ground.

Shielded Wires
Shielded wires are indicated by a dotted line around a portion of the wire. **NEVER probe through the insulation of a shielded wire—a short-to-ground will result.**

Fig. 2-13
Splice Points

In order to distribute power and ground to the various circuits, *splices* within the harness are used. An octagon with an ID number (again with *E* for engine, *I* for instrument panel, and *B* for body, plus a sequential number) is used to represent a splice. This ID number corresponds to the **splice point location table** that follows the wiring diagram. This table has both a description of where the splice is located, and the page number of the Section G location diagram.

When making checks on the vehicle, **use connectors and harness-to-harness connectors as your test point of “first choice”**. Splices tend to be difficult to find in the harness because they are wrapped in tape or plastic conduit. Also, the location diagram given in Section G will give you *only a general idea* of where the splice is located. Inspect the individual splice points only if the checks at the connectors “point to” the splice as being the problem.

Splice Point Symbol

A splice point is represented by an "octagon". Use the ID number to find the location of the splice.

Fig. 2-14

- **Letter “B” stands for BODY**

Page 15 © Toyota Motor Sales, U.S.A., Inc. All Rights Reserved.
Locating a Splice Point

Look up the ID number on the Splice Location Table. Turn to the Section G page listed for a diagram.

G ELECTRICAL WIRING ROUTING

- Location of Connector Joining Wire Harness and Wire Harness
- Location of Ground Points

[Sedan]
Power and Ground Distribution

If there is a problem which causes an entire circuit to be inoperative, the first two areas you need to check are the circuit’s fuse and ground. The EWD can direct you to other circuits which share the fuse or ground point. By operating these circuits, you can check the condition of the fuse and ground point without making a physical inspection. This saves you time!

The following sections outline how this is done.

Power Distribution

If you can find another circuit which uses a particular fuse, and it operates correctly, you will have confirmed that the fuse is GOOD.

Key Features

- **Section H Power Source (Current Flow)**
 Go to the System Circuit Diagram for the problem circuit. On the diagram, the fuse is always located at the top of the page. To find additional circuits that share the same fuse, use the second chart in Section H Power Source (Current Flow). This multi-page chart lists every load on the vehicle, with the fuse that it’s connected to.

- **Power Source System Circuit Diagram**
 If you find that a fuse is not receiving B+, use the **Power Source** system circuit diagram in Section I for fusible link information. This color wiring diagram contains all of the features and location information found in each system circuit diagram. You can also use the **Power Source (Current Flow)** chart in Section H. The flow chart located at the beginning of Section H also traces the B+ side of the fuse to its fusible link source. But, because it does not have all the features of the Power Source System Circuit Diagram (such as connector ID’s, splice ID’s, wire colors, and support sections), it is not as useful.
Section H
Power Source
(Current Flow)

Use this table to find other components that use the same fuse. If the other component works, the fuse is OK. If you find that the fuse is OK, but not receiving B+, use the Power Source System Circuit Diagram to trace the circuit back to the fusible links.

Fig. 2-16

Gauge Fuse Information
Ground Distribution

In the electrical system, a load's ground point is often shared with other circuits. If another circuit which shares the ground point with your inoperative circuit works properly, then you know that the grounding point is OK. This does not eliminate the possibility of a problem on the ground side of the circuit, or a poor connection problem between ground point terminals "stacked" onto a single ground point.

Key Features

- **Ground Point ID**

 To check the grounding point, look for the triangle shaped ground symbol on the bottom of the page. All ground points have a two-letter ID number: the first letter represents Engine, Instrument panel, or Body, the same as with the splice points and harness-to-harness connectors.

- **Finding Circuits Which Share the Ground Point**

 Using the Ground Point ID, turn to Section J, Ground Point, in the EWD. In this section, each ground point is listed with the names of all components and splices that are connected to it.

- **Locating the Ground Point on the Vehicle**

 If you determine that there is a problem with the ground, use the Ground Point Location table that follows the system circuit diagram, for a description of the ground location, and the page number to turn to for a diagram of where the ground point is located.
Section J
Ground Points

Look at Section J, Ground Point, for circuits that share the ground, or redundant ground paths.

Fig. 2-18

Follow the ground ID number to Section J and to Section G.

G ELECTRICAL WIRING ROUTING

- Location of Connector Joining Wire Harness and Wire Harness
- Location of Ground Points
- Location of Splice Points

Page 20 © Toyota Motor Sales, U.S.A., Inc. All Rights Reserved.
Additional Support Sections

In addition to the wiring diagram and location tables, the EWD provides other resources that you can use when diagnosing a problem.

System Outline

The first step in any diagnostic process is to verify the problem. To do this, you'll need to know exactly how the system is supposed to work. The System Outline is one of the best places for this information. This section, which follows immediately after the wiring diagram, describes the operation of the circuit, and maps out the path of current flow "step-by-step" for each mode of operation. This is especially useful in circuits which use an ECU to "logically" control a circuit based upon various sensor inputs.

The System Outline section is found only with complicated or ECU controlled circuits. For many system circuit diagrams, no help is given; you must be able to apply basic circuit theory and your own knowledge about how the circuit works to make a successful diagnosis using the EWD.

SYSTEM OUTLINE

Current is applied at all times through a stop fuse to terminal #8 of the stop light switch when the ignition switch is turned on. Current flows from the ground fuse to terminal #6 of the light failure sensor, and also flows through the rear left warning light to terminal #6 of the light failure sensor.

STOP LIGHT DISCONNECTION WARNING

When the ignition switch is turned on and the brake pedal is depressed, if the stop light circuit is open, the current flowing from terminal #7 of the light failure sensor to terminal #6 changes, so the light failure sensor detects the disconnection and the warning circuit of the light failure sensor is activated.

As a result, the current flows from terminal #6 of the light failure sensor --- terminal #7 --- ground, and turns the rear left warning light on by pressing the brake pedal. The current flowing to terminal #6 of the light failure sensor keeps the warning circuit on hold and the warning light on until the ignition switch is turned off.

SERVICE HINTS

#1 STOP LIGHT SW

- #7: Ground with brake pedal depressed
- #8: Light Failure Sensor

1. #4 - ground: DS110 w/ stop light on
2. #7 - ground: DS110 w/ brake on at D4 position

#1 PARTS LOCATION

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>106</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td>42</td>
<td>50</td>
</tr>
</tbody>
</table>

#2 JUNCTION BLOCK AND WIRE HARNESS CONNECTOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>106</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td>42</td>
<td>50</td>
</tr>
</tbody>
</table>

#3 CONNECTOR JOINING WIRE HARNESS AND WIRE HARNESS

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>106</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td>42</td>
<td>50</td>
</tr>
</tbody>
</table>

GROUND POINTS

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>106</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>20</td>
</tr>
</tbody>
</table>

SPLICE POINTS

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>106</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td>42</td>
<td>50</td>
</tr>
</tbody>
</table>
Service Hints

Like the System Outline, the Service Hints section follows selected wiring diagrams. This section provides pin voltages and/or component resistance values (some of these values are found only in the EWD and are not in the repair manual). However, Service Hints are not supplied with every wiring diagram. When they are given, they will cover only some of the pin voltages and resistance values in the circuit.

Overall, the EWD relies on your skills and electrical knowledge to determine the amount of voltage you should measure at a particular pin.

ENGINE CONTROL (5S-FE A/T)

<table>
<thead>
<tr>
<th>CODE</th>
<th>PARTS LOCATION</th>
<th>CODE</th>
<th>SEE PAGE</th>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>RELAY BLOCKS</th>
<th>CODE</th>
<th>SEE PAGE</th>
<th>RELAY BLOCK KEY (RELAY BLOCK LOCATION)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>JUNCTION BLOCK AND WIRE HARNESS CONNECTOR</th>
<th>CODE</th>
<th>SEE PAGE</th>
<th>JUNCTION BLOCK AND WIRE HARNESS CONNECTOR LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the last section of the EWD, the vehicle wiring diagram is printed in the older map-style format. If you were “brought up” with this type of wiring diagram, you may prefer to use it because “you can see everything at once.” But with all of the added support information that is provided in the Section I wiring diagrams, there is no real advantage in using the overall wiring diagrams, except for the “familiarity” factor. Anything that can be done with the map-style schematic can be done faster using the System Circuit Diagrams and support sections in the EWD.

Because there is so much information in the EWD manual, it sometimes can be confusing to use. Being able to quickly find the information you want requires practice. During this rest of this course, you’ll be performing worksheets and diagnosing actual on-car problems to make you more familiar with all of the EWD features.